

Dream Inverter 19 Series Service Manual 2017

CONTENTS

1. Precaution	3
1.1 Safety Precaution	3
1.2 Warning	3
2. Model List	6
3. Dimension	7
3.1 Indoor Unit	7
3.2 Outdoor Unit	11
4 .Refrigerant Cycle Diagram	16
5 .Installation Details	18
5.1 Wrench torque sheet for installation	18
5.2 Connecting the cables	18
5.3 Pipe length and the elevation	19
5.4 Installation for the first time	21
5.5 Adding the refrigerant after running the system for many years	21
5.6 Re-installation while the indoor unit need to be repaired	22
5.7 Re-installation while the outdoor unit need to be repaired	23
6.Disassembly Guide	25
7. Wiring Diagrams	31
7.1 Indoor Unit	31
7.2 Outdoor Unit	32
8. Operation Characteristics	36
9. Electronic function	37
9.1 Abbreviation	37
9.2 Display function	37
9.3 Main Protection	38
9.4 Operation Modes and Functions	39
9.5 Multi-Function Board instruction (This multi-function board is optional)	46
10. Troubleshooting	49
10.1 Indoor Unit Error Display	50
10.2 Trouble shooting	51

1. Precaution

1.1 Safety Precaution

- To prevent injury to the user or other people and property damage, the following instructions must be followed.
- Incorrect operation due to ignoring instruction will cause harm or damage.
- Before service the unit, be sure to read this service manual at first.

1.2 Warning

> Installation

■ Do not use a defective or underrated circuit breaker. Use this appliance on a dedicated circuit.

There is risk of fire or electric shock.

■ For electrical work, contact the dealer, seller, a qualified electrician, or an authorized service center.

Do not disassemble or repair the product, there is risk of fire or electric shock.

■ Always ground the product.

There is risk of fire or electric shock.

■ Install the panel and the cover of control box securely.

There is risk of fire of electric shock.

Always install a dedicated circuit and breaker.

Improper wiring or installation may cause fore or electric shock.

■ Use the correctly rated breaker of fuse.

There is risk of fire or electric shock.

Do not modify or extend the power cable.

There is risk of fire or electric shock.

■ Do not install, remove, or reinstall the unit by yourself (customer).

There is risk of fire, electric shock, explosion, or injury.

■ Be caution when unpacking and installing the product.

Sharp edges could cause injury, be especially careful of the case edges and the fins on the condenser and evaporator.

- For installation, always contact the dealer or an authorized service center.
- Do not install the product on a defective installation stand.
- Be sure the installation area does not deteriorate with age.

If the base collapses, the air conditioner could fall with it, causing property damage, product failure, and personal injury.

- Do not let the air conditioner run for a long time when the humidity is very high and a door or a window is left open.
- Take care to ensure that power cable could not be pulled out or damaged during operation.

There is risk of fire or electric shock.

■ Do not place anything on the power cable.

There is risk of fire or electric shock.

■ Do not plug or unplug the power supply plug during operation.

There is risk of fire or electric shock.

- Do not touch (operation) the product with wet hands.
- Do not place a heater or other appliance near the power cable.

There is risk of fire and electric shock.

■ Do not allow water to run into electrical parts.

It may cause fire, failure of the product, or electric shock.

■ Do not store or use flammable gas or combustible near the product.

There is risk of fire or failure of product.

■ Do not use the product in a tightly closed space for a long time.

Oxygen deficiency could occur.

- When flammable gas leaks, turn off the gas and open a window for ventilation before turn the product on.
 - If strange sounds or smoke comes

from product, turn the breaker off or disconnect the power supply cable.

There is risk of electric shock or fire.

■ Stop operation and close the window in storm or hurricane. If possible, remove the product from the window before the hurricane arrives.

There is risk of property damage, failure of product, or electric shock.

■ Do not open the inlet grill of the product during operation. (Do not touch the electrostatic filter, if the unit is so equipped.)

There is risk of physical injury, electric shock, or product failure.

■ When the product is soaked, contact an authorized service center.

There is risk of fire or electric shock.

■ Be caution that water could not enter the product.

There is risk of fire, electric shock, or product damage.

■ Ventilate the product from time to time when operating it together with a stove etc.

There is risk of fire or electric shock.

■ Turn the main power off when cleaning or maintaining the product.

There is risk of electric shock.

■ When the product is not be used for a long time, disconnect the power supply plug or turn off the breaker.

There is risk of product damage or failure, or unintended operation.

■ Take care to ensure that nobody could step on or fall onto the outdoor unit.

This could result in personal injury and product damage.

> CAUTION

■ Always check for gas (refrigerant) leakage after installation or repair of product.

Low refrigerant levels may cause failure of product.

■ Install the drain hose to ensure that

water is drained away properly.

A bad connection may cause water leakage.

■ Keep level even when installing the product.

It can avoid vibration of water leakage.

■ Do not install the product where the noise or hot air from the outdoor unit could damage the neighborhoods.

It may cause a problem for your neighbors.

- Use two or more people to lift and transport the product.
- Do not install the product where it will be exposed to sea wind (salt spray) directly.

It may cause corrosion on the product.

Corrosion, particularly on the condenser and evaporator fins, could cause product malfunction or inefficient operation.

> Operational

- Do not expose the skin directly to cool air for long time. (Do not sit in the draft).
- Do not use the product for special purposes, such as preserving foods, works of art etc. It is a consumer air conditioner, not a precision refrigerant system.

There is risk of damage or loss of property.

- Do not block the inlet or outlet of air flow.
- Use a soft cloth to clean. Do not use harsh detergents, solvents, etc.

There is risk of fire, electric shock, or damage to the plastic parts of the product.

- Do not touch the metal parts of the product when removing the air filter. They are very sharp.
- Do not step on or put anything on the product. (outdoor units)
- Always insert the filter securely.
 Clean the filter every two weeks or more often if necessary.

A dirty filter reduces the efficiency of the air conditioner and could cause product malfunction or damage.

Do not insert hands or other objects

through air inlet or outlet while the product is operated.

- Do not drink the water drained from the product.
- Use a firm stool or ladder when cleaning or maintaining the product.

Be careful and avoid personal injury.

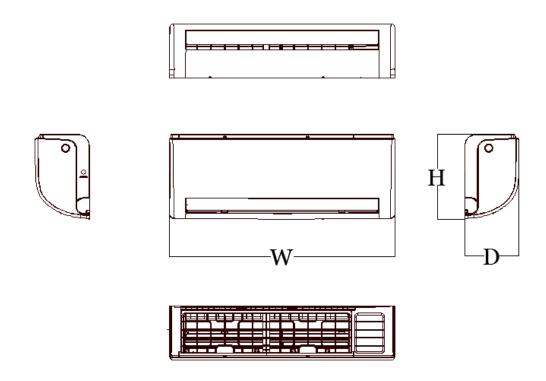
■ Replace the all batteries in the remote control with new ones of the same type. Do not mix old and new batteries or different types of batteries.

There is risk of fire or explosion.

■ Do not recharge or disassemble the batteries. Do not dispose of batteries in a fire.

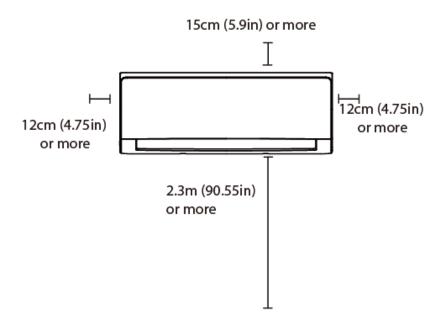
They may burn of explode.

■ If the liquid from the batteries gets onto your skin or clothes, wash it well with clean water. Do not use the remote of the batteries have leaked.

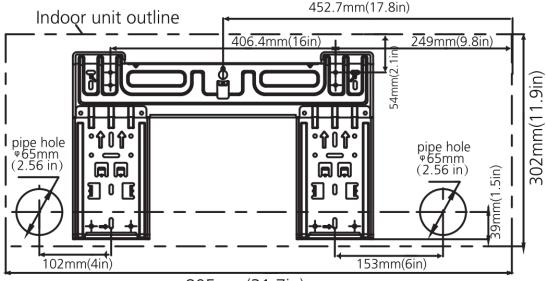

2. Model List

Model Names of Indoor/Outdoor Units

	Capacity	Indoor units	Outdoor units	
Inverter	12k	MWDRC12S	MRDRC12AS	
	12k			208-230V,60Hz
	18k	MWDRC18S	MRDRC18S	
	18k	MWHAEC18S	MRHAEC18S	
	23k	MWAEC24S	MRAEC24AS	

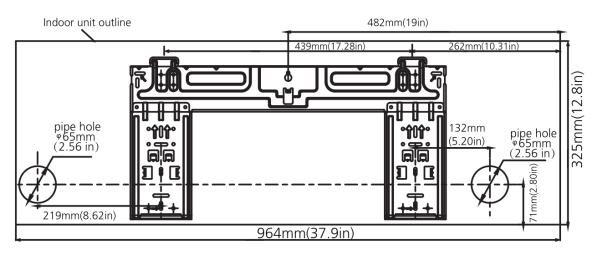

3. Dimension

3.1 Indoor Unit

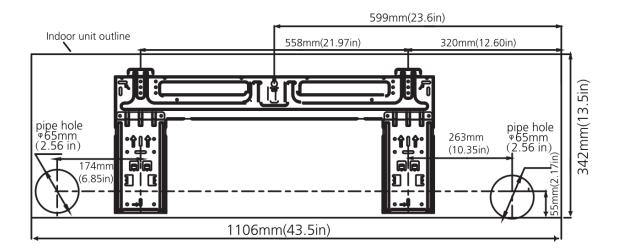


Model	W	D	Н
MWDRC12S	805	193	302
MWDRC12S	805	193	302
MWDRC18S	964	222	325
MWHAEC18S	964	222	325

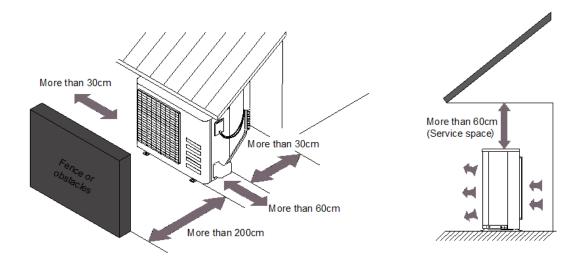
MWAEC24S	1106	232	342
----------	------	-----	-----


MWAEC12SA, MWAEC12S, MWAEC12S

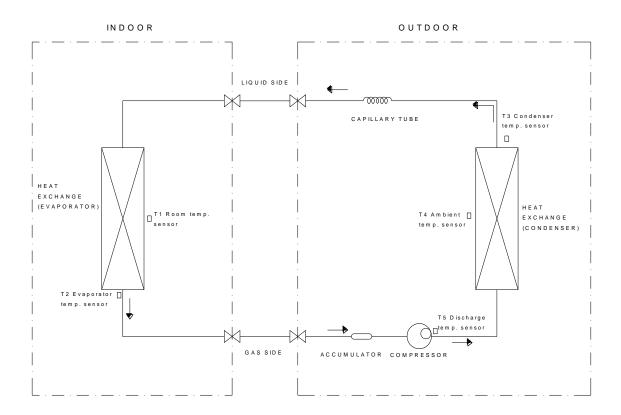
805mm(31.7in)


Model B

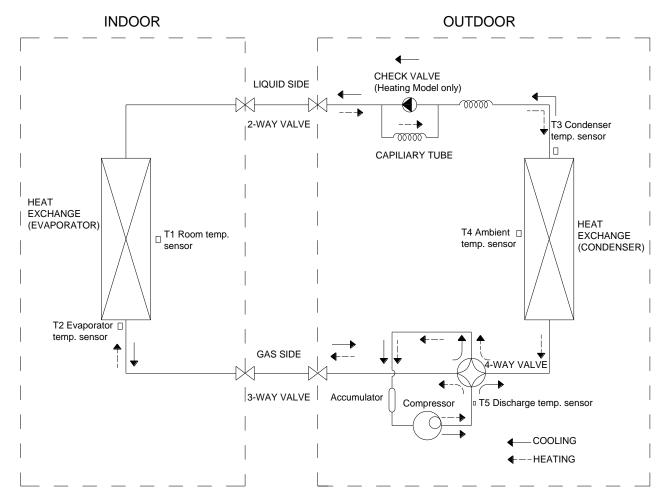
MWDRC18S, MWHAEC18S


Model C

MWAEC24S


Model D

3.2 Outdoor Unit



4 .Refrigerant Cycle Diagram

For cooling only models:

For heat pump models:

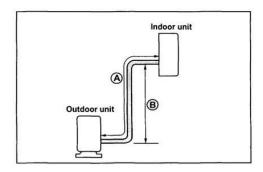
5 .Installation Details

5.1 Wrench torque sheet for installation

Outside	diameter	Torque	Additional tightening torque
mm	inch	N.cm	N.cm
Ф6.35	1/4	1500(153kgf.cm)	1600(163kgf.cm)
Ф9.52	3/8	2500(255kgf.cm)	2600(265kgf.cm)
Ф12.7	1/2	3500(357kgf.cm)	3600(367kgf.cm)
Ф15.9	5/8	4500(459kgf.cm)	4700(479kgf.cm)
Ф19	3/4	6500(663kgf.cm)	6700(683kgf.cm)

5.2 Connecting the cables

The power cord of connect should be selected according to the following specifications sheet.


Rated current of appliance	Nominal cross-sectional area (mm²)
>3 and ≤6	0.75
>6 and ≤10	1
>10 and ≤16	1.5
>16 and ≤25	2.5

The cable size and the current of the fuse or switch are determined by the maximum current indicated on the nameplate which located on the side panel of the unit. Please refer to the nameplate before selecting the cable, fuse and switch.

5.3 Pipe length and the elevation

The pipe length and refrigerant amount:

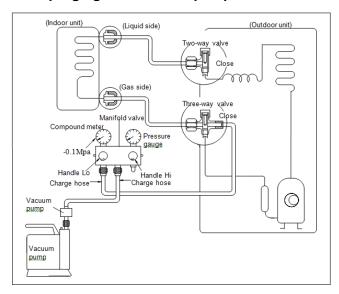
	Pipe size		Standard	Max.	Max.	Additional
Model	Gas	Liquid	length (m)	Elevation B (m)	Length A (m)	refrigerant (g/m)
MWDRC12S/MRDRC12AS	1/2" (Φ12.7)	1/4" (Ф6.35)	7.5	20	30	15
MWDRC12S/MRDRC12AS	1/2" (Φ12.7)	1/4" (Ф6.35)	7.5	20	30	15
MWDRC18S/MRDRC18AS	1/2" (Φ12.7)	1/4" (Ф6.35)	7.5	20	30	15
	1/2"	1/4"				

Caution:

The capacity test is based on the standard length and the maximum permissive length is based on the system reliability.

5.4 Installation for the first time

Air and moisture in the refrigerant system have undesirable effects as below:


- Pressure in the system rises.
- Operating current rises.
- Cooling or heating efficiency drops.
- Moisture in the refrigerant circuit may freeze and block capillary tubing.
- Water may lead to corrosion of parts in the refrigerant system.

Therefore, the indoor units and the pipes between indoor and outdoor units must be leak tested and evacuated to remove gas and moisture from the system.

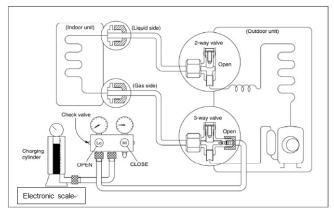
Gas leak check (Soap water method):

Apply soap water or a liquid neutral detergent on the indoor unit connections or outdoor unit connections by a soft brush to check for leakage of the connecting points of the piping. If bubbles come out, the pipes have leakage.

1. Air purging with vacuum pump

- Completely tighten the flare nuts of the indoor and outdoor units, confirm that both the 2-way and 3-way valves are set to the closed position.
- Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port..
- 3) Connect the charge hose of handle hi

- connection to the vacuum pump.
- 4) Fully open the handle Lo of the manifold valve.
- 5) Operate the vacuum pump to evacuate.
- 6) Make evacuation for 30 minutes and check whether the compound meter indicates -0.1Mpa. If the meter does not indicate -0.1Mpa after pumping 30 minutes, it should be pumped 20 minutes more. If the pressure can't achieve -0.1Mpa after pumping 50 minutes, please check if there are some leakage points.


Fully close the handle Lo valve of the manifold valve and stop the operation of the vacuum pump. Confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).

7) Turn the flare nut of the 3-way valves about 45° counterclockwise for 6 or 7seconds after the gas

coming out, then tighten the flare nut again. Make sure the pressure display in the pressure indicator is a little higher than the atmosphere pressure. Then remove the charge hose from the 3 way valve.

8) Fully open the 2 way valve and 3 way valve and securely tighten the cap of the 3 way valve.

5.5 Adding the refrigerant after running the system for many years

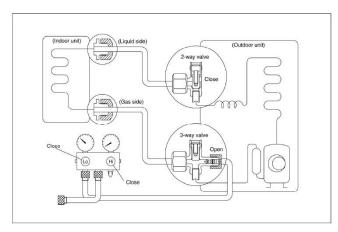
Procedure:

1). Connect the charge hose to the 3-way service port, open the 2-way valve and the 3-way valve. Connect the charge hose to the valve at the

bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.

2). Purge the air from the charge hose.

Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).


- 3) Put the charging cylinder onto the electronic scale and record the weight.
- 4) Operate the air conditioner at the cooling mode.
- 5) Open the valves (Low side) on the charge set and charge the system with liquid refrigerant.
- 6). When the electronic scale displays the proper weight (refer to the gauge and the pressure of the low side), disconnect the charge hose from the 3-way valve's service port immediately and turn off the air conditioner before disconnecting the hose.
- 7). Mount the valve stem caps and the service port

Use torque wrench to tighten the service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

5.6 Re-installation while the indoor unit need to be repaired

1. Collecting the refrigerant into the outdoor unit

Procedure

1). Confirm that both the 2-way and 3-way valves are set to the opened position

Remove the valve stem caps and confirm that the

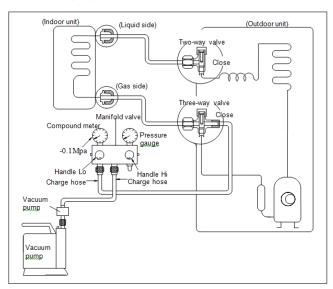
valve stems are in the opened position.

Be sure to use a hexagonal wrench to operate the valve stems.

- 2). Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port.
- 3). Air purging of the charge hose.

Open the handle Lo valve of the manifold valve slightly to purge air from the charge hose for 5 seconds and then close it quickly.

- 4). Set the 2-way valve to the close position.
- 5). Operate the air conditioner at the cooling cycle and stop it when the gauge indicates 0.1MPa.
- 6). Set the 3-way valve to the closed position immediately

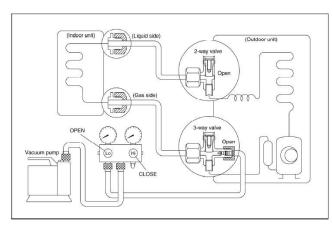

Do this quickly so that the gauge ends up indicating 0.3 to 0.5Mpa.

Disconnect the charge set, and tighten the 2-way and 3-way valve's stem nuts.

Use a torque wrench to tighten the 3-way valves service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

2. Air purging with vacuum pump

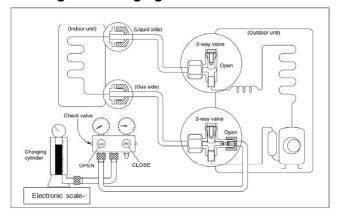


- Completely tighten the flare nuts of the indoor and outdoor units, confirm that both the 2-way and 3-way valves are set to the closed position.
- Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port.
- 3) Connect the charge hose of handle hi connection to the vacuum pump.

- 4) Fully open the handle Lo of the manifold valve.
- 5) Operate the vacuum pump to evacuate.
- 6) Make evacuation for 30 minutes and check whether the compound meter indicates
- -0.1Mpa. If the meter does not indicate
- -0.1Mpa after pumping 30 minutes, it should be pumped 20 minutes more. If the pressure can't achieve -0.1Mpa after pumping 50 minutes, please check if there are some leakage points. Fully close the handle Lo valve of the manifold valve and stop the operation of the vacuum pump. Confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).
- 7) Turn the flare nut of the 3-way valves about 45° counterclockwise for 6 or 7seconds after the gas coming out, then tighten the flare nut again. Make sure the pressure display in the pressure indicator is a little higher than the atmosphere pressure. Then remove the charge hose from the 3 way valve.
- 8) Fully open the 2 way valve and 3 way valve and securely tighten the cap of the 3 way valve.

5.7 Re-installation while the outdoor unit need to be repaired

1. Evacuation for the whole system



Procedure:

- 1). Confirm that both the 2-way and 3-way valves are set to the opened position.
- 2). Connect the vacuum pump to 3-way valve's service port.
- 3). Evacuation for approximately one hour.

- Confirm that the compound meter indicates -0.1Mpa.
- 4). Close the valve (Low side) on the charge set, turn off the vacuum pump, and confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).
- 5). Disconnect the charge hose from the vacuum pump.

2. Refrigerant charging

Procedure:

1). Connect the charge hose to the charging cylinder, open the 2-way valve and the 3-way valve

Connect the charge hose which you disconnected from the vacuum pump to the valve at the bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.

- 2). Purge the air from the charge hose Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).
- 3) Put the charging cylinder onto the electronic scale and record the weight.
- 4). Open the valves (Low side) on the charge set and charge the system with liquid refrigerant If the system cannot be charge with the specified amount of refrigerant, or can be charged with a little at a time (approximately 150g each time), operating the air conditioner in the cooling cycle; however, one time is not sufficient, wait approximately 1 minute and then repeat the procedure.

- 5). When the electronic scale displays the proper weight, disconnect the charge hose from the 3-way valve's service port immediately If the system has been charged with liquid refrigerant while operating the air conditioner, turn off the air conditioner before disconnecting the hose.
- 6). Mounted the valve stem caps and the service port

Use torque wrench to tighten the service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

6.Disassembly Guide

6.1 How to Remove the Filter

Step1:

Place your hands at A and B. Lift the filter slightly to loosen the fastener

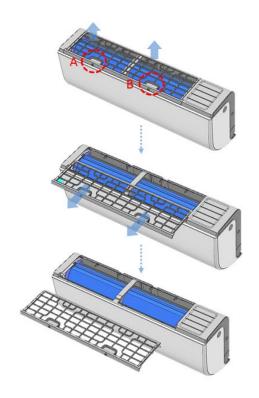
Step2:

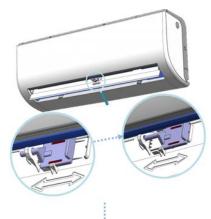
Pull the filter gently along the horizontal direction.

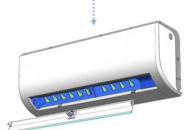
Step3:

Pull out the filter.

6.2 How to Remove the Horizontal louver


Step1:


Open the horizontal louver. Push the clasp to the right to open it.


Step 2:

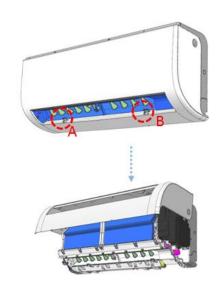
Gently bend the horizontal louver. Remove it from the indoor unit.

6.3 How to hold the indoor for piping connection

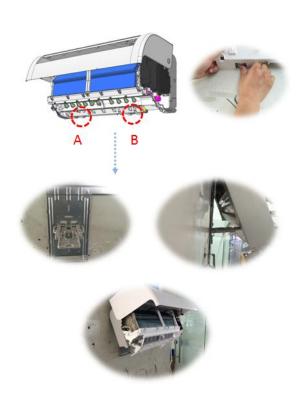
Step1:

Open screw caps A and B. Remove the two screws.

Step2:


Open the panel assembly. Move the slider to fix the panel.

Step3:

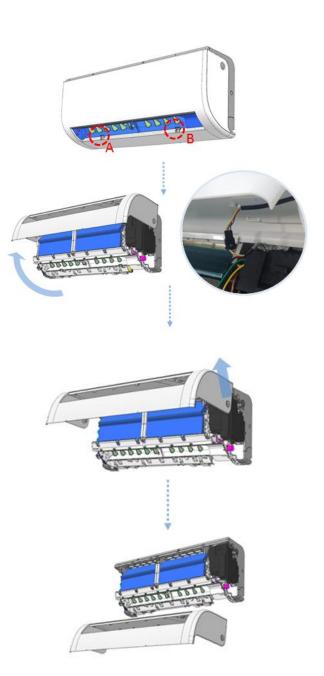

Press clasps A and B to detach the indoor unit from the installation plate.

Step4:

Unfold the installation plate support. Then allow it to support the indoor unit. This helps connect the pipes at the back of the unit.

6.4 How to Remove the Panel Assembly

Step1:


Open screw caps A and B. Remove the two screws.

Step2:

Open the panel assembly, loosen the display board connector.

Step3:

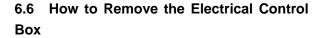
Pull the panel assembly along the direction indicated to remove it.

6.5 How to Remove the PCB

Step1:

Press A to remove the terminal cover.

Step2:


Remove screw B to remove the cover of the electronic control box .

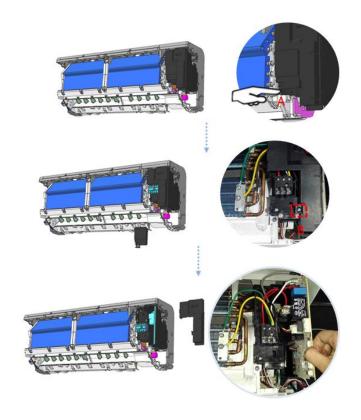
Step3:

Then you can remove the PCB.

Note:

It is not necessary to remove the panel to remove the PCB. in order to show clearly inside, these pictures are without panel.

Step1:


Remove screws A, B, and C. Pull out the coil temperature sensor D from the sensor holders

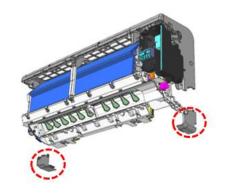
Step2:

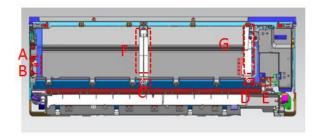
Pull out the Electrical control box.

Note:

It is not necessary to remove the panel to remove the Electrical control box, in order to show clearly inside, these pictures are without panel.

6.7 How to Remove the Chassis Assembly


CAUTION: Because the 24K indoor unit is relatively large and heavy, make sure you have two people to implement the following steps.


Step1:

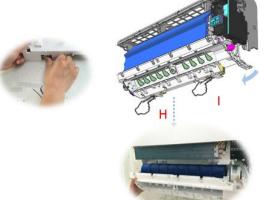
Remove the left and right pipe cover.

Step2:

Remove the 5 screws A, B, C, D, and E. Remove support parts F and G.

Step3:

Open the E-box. Detach the fan motor and louver motor connectors from the PCB.


Step4:

Press lockers H and I, to lose the indoor from the installation plate, lift it a little and pull out it along the direction indicated in right image.

Note:

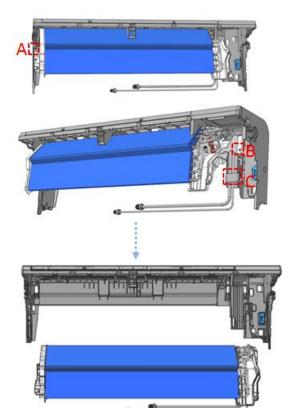
It is not necessary to remove the panel to remove the Chassis assembly, in order to show clearly inside, these pictures are without panel.

6.8 How to Remove the Evaporator Assembly

CAUTION: Because the 24K indoor unit is relatively large and heavy, make sure you have two people to implement the following steps.

Step1:

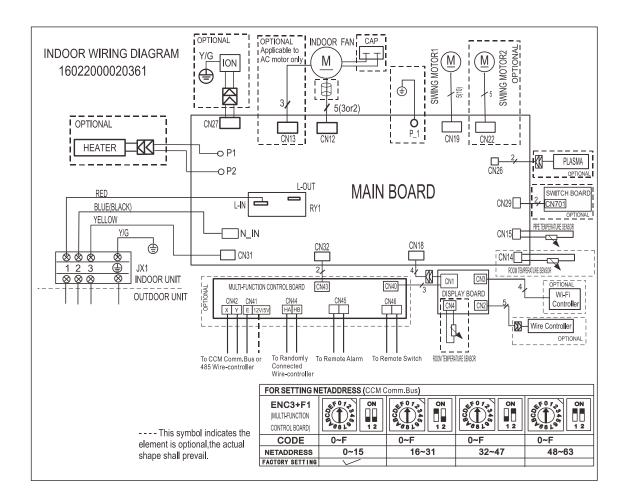
Remove the Electric control box.

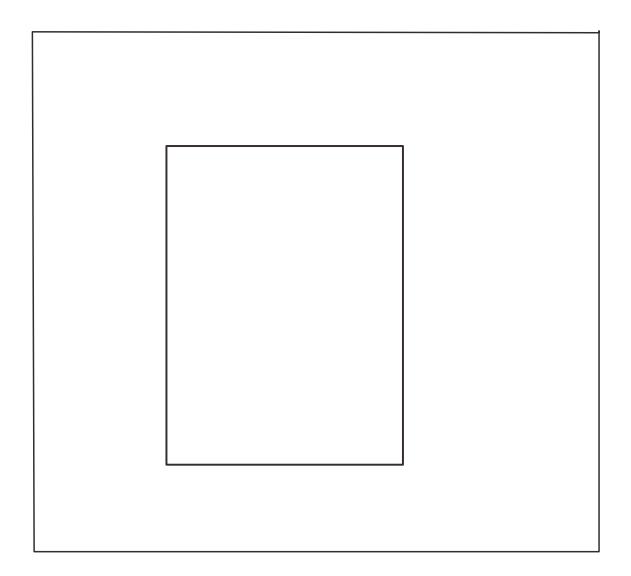

Step2:

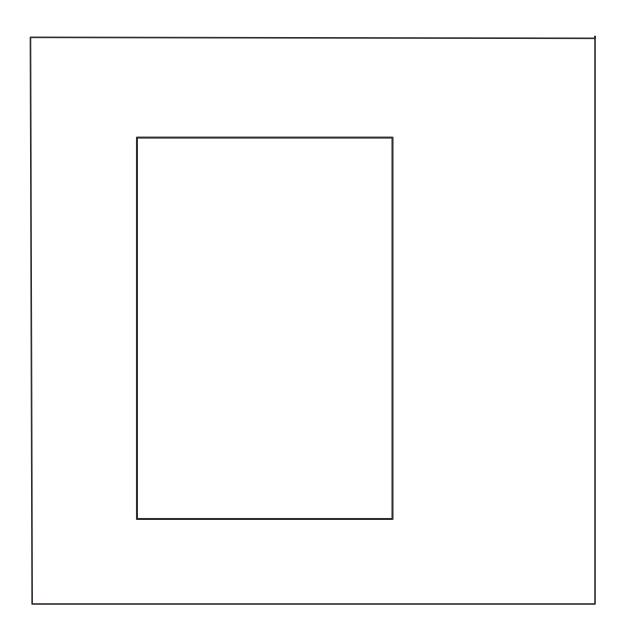
Remove the Chassis assembly

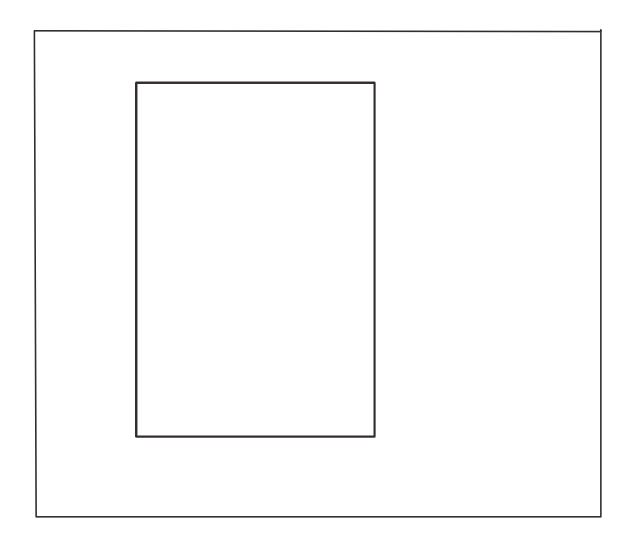
Step3:

Unfold the Pipe clamp board C, remove screw A and B.


Step4:


Pull out the evaporator.


7. Wiring Diagrams


7.1 Indoor Unit

MWDRC12S/MRDRC12AS, MWDRC18S/MRDRC18AS,

8. Operation Characteristics

Mode	Cooling operation	Drying operation
Temperature		
Room temperature	17℃~32℃ (62°F~90°F)	10℃~32℃ (50℉~90℉)
Outdoor temperature	0° C~50°C (32°F~122°F) -15°C~50°C (5°F~122°F) (For the models with low temperature cooling system)	0°C~50°C (32°F~122°F)

CAUTION:

- 1. If the air conditioner is used beyond the above conditions, certain safety protection features may come into operation and cause the unit to operate abnormally.
- 2. The room relative humidity should be less than 80%. If the air conditioner operates beyond this figure, the surface of the air conditioner may attract condensation. Please set the vertical air flow louver to its maximum angle (vertically to the floor), and set HIGH fan mode.
 - 4. The optimum performance will be achieved during this operating temperature zone.

9. Electronic function

9.1 Abbreviation

T1: Indoor room temperature

T2: Coil temperature of evaporator

T3: Coil temperature of condenser

T4: Outdoor ambient temperature

TP: Compressor discharge temperature

9.2 Display function

9.2.1 Icon explanation on indoor display board.

Digital display:

Displays the temperature settings when the air conditioner is operational.

Displays the room temperature in Fan and Drying mode.

Displays the self-diagnostic codes.

Dispalys ' \mathbf{O} \mathbf{O} ," for three seconds when Timer ON, Fresh, Swing, Turbo or Silence feature is activated.

Dispalys '**DF**' for three seconds when Timer OFF is set.

Dispalys '**DF**' for three seconds when Fresh, Swing, Turbo or Silence feature is cancelled.

Dispalys '**JF**, under deforsting operation.

Dispalys '**L**, when anti-cold air feature is activated under heating mode.

Dispalys '**SC**' during self clean operation (if aplicable).

Dispalys '**FP**', when freeze protection is turned on (if aplicable).

When ECO function is actived,the "□□" illuminates gradually one by one as E→□→□→set temperature→ E
In one second interval. (if aplicable).

WIFI control display (optional)

Displays when the WIFI control feature is activated. (Not available when the unit does not have this function)

NOTE:

A guide on using the infrared remote is not included in this literature package.

9.3 Main Protection

9.3.1 Three minutes delay at restart for compressor

Less than 1 minute delay for the 1st time start-up and 3 minutes delay for others.

9.3.2 Temperature protection of compressor top

The unit will stop working when the compressor top temp. protector cut off, and will restart after the compressor top temp. protector restart.

9.3.3 Temperature protection of compressor discharge

Compressor discharge temp. TP>115 $^{\circ}$ C for 5s, compressor stops.

9.3.4 Fan speed is out of control

When indoor fan speed keeps too low (300RPM) for certain time, the unit will stop and the LED will display the failure

9.3.5 Inverter module protection

The Inverter module has a protection function about current, voltage and temperature. If these protections happen, the corresponding code will display on indoor unit and the unit will stop working.

9.3.6 Indoor fan delayed open function

When the unit starts up, the louver will be active immediately and the indoor fan will open 7s later.

If the unit runs in heating mode, the indoor fan will be also controlled by anti-cold wind function.

9.3.7 Compressor preheating functions

Preheating permitting condition:

When T4(outdoor ambient temperature) < 3°C, the preheating function will be activated.

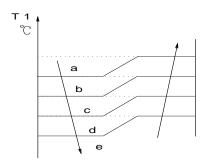
9.3.8 Sensor protection at open circuit and breaking disconnection.

When there's only one temperature sensor in malfunction, the air conditioner will keep working but show the error code, in case of any emergency use.

When there's more than one temperature sensor in malfunction, the air conditioner will stop working.

9.3.9 Refrigerant leakage detection

This function is only active in cooling mode. It can better prevent the compressor being damaged by refrigerant leakage or compressor overload.


Open condition:

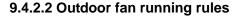
When compressor is active, the value of the Coil temperature of evaporator T2 has no change or very little change.

9.4 Operation Modes and Functions

9.4.1 Fan mode

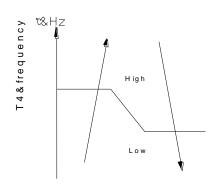
- (1) Outdoor fan and compressor stop.
- (2) Temperature setting function is disabled, and no setting temperature is displayed.
- (3) Indoor fan can be set to high/med/low/auto.
- (4) The louver operates same as in cooling mode.
- (5) Auto fan:

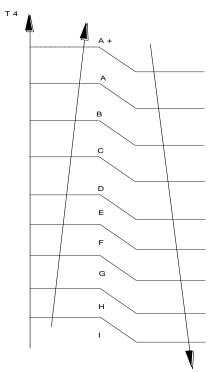
9.4.2 Cooling Mode

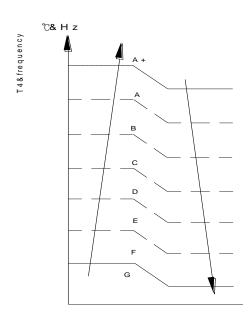

9.4.2.1 Compressor running rules

When T1- Ts $<\Delta T$ -2°C, the compressor will stop,

when T1-Ts > Δ T +3°C, the compressor will be activated.


 ΔT is the programmed parameter of temperature compensation.


When the AC run in mute mode, the compressor will run with low frequency. When the current is more than setting value, the current protection function will be activated, and the compressor will stop.

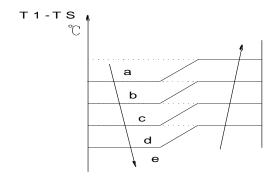

For different outdoor units, the fan speeds are different.

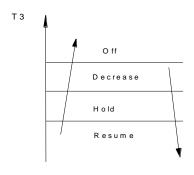
For MWDRC18S/MRDRC18AS,

For other models, the outdoor unit will be run at different fan speed according to T4.and compressor frequency.

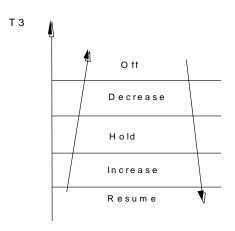
9.4.2.3 Indoor fan running rules

In cooling mode, indoor fan runs all the time and the speed can be selected as high, medium, low and auto.


When the setting temp. is reached, if the compressor stop running, indoor fan motor will run in Minimum speed or setting speed.


The indoor fan is controlled as below:

Td=Ts+∆t


Setting fan speed	T1-Td ℃(°F)	Actual fan speed
Н	A B C	H+ (H+=H+G) H (=H) H- (H-=H-G)
М	D E F	M+ (M+=M+Z) M (M=M) M- (M-=M-Z)
L	G H	L+ (L+=L+D) L (L=L) L- (L-=L-D)

The auto fan acts as below rules:

For other models,

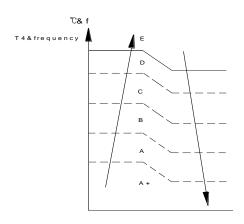
When condenser temperature is more than setting value, the compressor will stop.

9.4.2.5 Evaporator temperature protection

When evaporator temperature is less than setting value, the compressor will stop.

9.4.3 Heating Mode

9.4.3.1 Compressor running rules


When T1-Ts>- Δ T, the compressor will stop, when T1-T_S<- Δ T-1.5, the compressor will be on.

ΔT is the programmed parameter of temperature compensation.
When the AC run in mute mode, the compressor will run with low frequency.
When the current is more than setting value, the current protection function will be activated and the compressor will stop.

9.4.3.2 Outdoor fan running rules

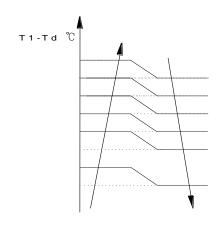
For different outdoor units, the fan speeds are different.

The outdoor unit will be run at different fan speed according to T4.and compressor frequency.

9.4.3.3 Indoor fan running rules

When the compressor is on, the indoor fan can be set to high/med/low/auto/mute.

When indoor unit coil temperature is low, the anti-cold air function will start and indoor fan motor will run at low speed, the speed can't be changed ,when the temperature is lower than setting value, the indoor fan motor will stop.


When the indoor temp reaches the setting temperature, the compressor will stop, the indoor fan motor will run at the minimum speed or setting speed.(The anti-cold air function is valid).

The indoor fan is controlled as below:

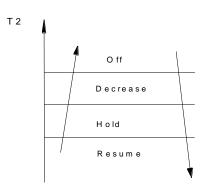
Td=Ts+ Δ t

Setting fan speed	T1-Td℃	Actual fan speed
Н		H- (H-=H-G)
''		H (=H)
		H+(H+=H+G)
М		M-(M-=M-Z)
		M(M=M)
	*	M+(M+=M+Z)
	1	L-(L-=L-D)
L		L(L=L)
		L+(L+=L+D)

Auto fan action in heating mode:

9.4.3.4 Defrosting mode

AC will enter the defrosting mode according to the value of temperature of T3 and the value of temperature of T4 and also the compressor running time.


During the defrosting mode, the compressor keep running, indoor and outdoor motor will stop, defrost lamp of the indoor unit will be

lighted "**JF**." will be displayed.

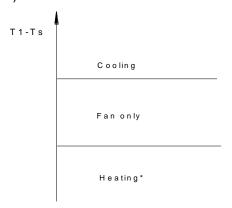
If any one of the following items is satisfied, the defrosting will finish and the machine will turn to normal heating mode.

- ----T3 rises to be higher than TCDE1°C.
- ----T3 keeps to be higher than TCDE2 $^{\circ}$ C for 80 seconds.
- ----The machine has run for 15 minutes in defrosting mode.

9.4.3.5 Evaporator coil temperature protection

Off: Compressor stops.

Decrease: Decrease the running frequency to the lower level. Hold: Keep the current frequency.


Resume: No limitation for frequency.

When evaporator temperature is more than the setting protection value, the compressor will stop.

9.4.4 Auto-mode

This mode can be chosen with remote controller and the setting temperature can be changed between 17°C~30°C

In auto mode, the machine will choose cooling, heating or fan-only mode according to ΔT (ΔT =T1-Ts).

Heating*: For cooling only models, they will run at fan speed

Indoor fan will run at auto fan of the relevant mode.

The louver operates same as in relevant mode. If the machine switches mode between heating and cooling, the compressor will keep stopping for certain time and then choose mode according to T1-Ts.

If the setting temperature is modified, the machine will choose running function again.

9.4.5 Drying mode

Indoor fan speed is fixed at breeze and can't be changed. The louver angle is the same as in cooling mode.

All protections are active and the same as that in cooling mode.

9.4.6 Forced operation function

Forced cooling mode:

The compressor and outdoor fan keep running

and the indoor fan runs at low speed. After running for 30 minutes, AC will turn to auto mode with 24°C setting temperature.

Forced auto mode:

The action of forced auto mode is the same as normal auto mode with 24 $^{\circ}\mathrm{C}$ setting temperature.

When AC receives signals, such as switch on, switch off, timer on, timer off, mode setting, fan speed setting, sleeping mode setting, follow me setting, it will quit the forced operation.

9.4.7 Sleep function

9.4.7.1 The sleep function is available in cooling, heating or auto mode.

9.4.7.2. Operation process in sleep mode is as follow:

When cooling, the setting temperature rises 1° C (be lower than 30° C) every one hour, 2 hours later the setting temperature stops rising and the indoor fan is fixed at low speed.

When heating, the setting temperature decreases 1° C (be higher than 17° C) every one hour, 2 hours later the setting temperature stops rising and indoor fan is fixed at low speed. (Anti-cold wind function has the priority).

9.4.7.3 Operation time in sleep mode is 7 hours. After 7 hours the AC quits this mode and turns off.

9.4.7.4 Timer setting is available

9.4.8 Auto-Restart function

The indoor unit is equipped with auto-restart function, which is carried out through an auto-restart module. In case of a sudden power failure, the module memorizes the setting conditions before the power failure. The unit will resume the previous operation setting (not including swing function) automatically after 3 minutes when power returns.

If the memorization condition is forced cooling mode, the unit will run in cooling mode for 30 minutes and turn to auto mode as 24° C setting temp.

If AC is off before power off and AC is required

to start up now, the compressor will have 1 minute delay when power on. Other conditions, the compressor will have 3 minutes delay when restarts.

9.4.9 Refrigerant Leakage Detection

With this new technology, the display area will show "EC" when the outdoor unit detects refrigerant leakage.

9.4.10 Self clean (optional)

For heat pump models which are provided with this function, after running in cooling or drying mode, if the user press "Self Clean" button on remote controller, firstly, indoor unit runs in fan only mode for a while, then low heat operation and finally runs in fan only again. This function can keep the inside of indoor unit dry and prevent breeding of mold.

9.4.11 Follow me (optional)

- 1) If the indoor PCB receives the signal which results from pressing the FOLLOW ME button on remote controller, the buzzer will emit a sound and this indicates the follow me function is initiated. But when the indoor PCB receives signal which sent from remote controller every 3 minutes, the buzzer will not respond. When the unit is running with follow me function, the PCB will control the unit according to the temperature from follow me signal, and the temperature collection function of room temperature sensor will be shielded, but the error detective function of room temperature sensor will be still valid.
- 2) When the follow me function is available, the PCB will control the unit according to the room temperature from the remote controller and the setting temperature.
- 3) The PCB will take action to the mode change information from remote controller signal, but it will not affected by the setting temperature.
- 4) When the unit is running with follow me function, if the PCB doesn't receive any signal

from remote controller for 7 minutes or pressing FOLLOW ME button again, the follow me function will be turned off automatically, and the temperature will control the unit according to the room temperature detected from its own room temperature sensor and setting temperature.

9.4.12 Silence operation (optional)

Press the "silence" button on remote controller to initiate SILENCE function. When the Silence function is activated, the compressor running frequency will keep lower than F2 and the indoor unit will bring faint breeze, which will reduce the noise to the lowest level and create a guiet and comfortable room for you.

9.4.13 Easy control (optional)

For the AE series, the on-off port, XYE port, WIFI, and wired controller (5-cored) features can operate at the same time. The non-polar wired controller, 4-cored wired controller, and central controller are mutually exclusive and cannot operate at the same time.

9.4.14 Point check function

Press the LED DISPLAY or LED or MUTE button of the remote controller three times, and then press the AIR DIRECTION or SWING button three times in ten seconds, the buzzer will keep ring for two seconds. The air conditioner will enter into the information enquiry status. You can press the LED DISPLAY or AIR DIRECTION button to check the next or front item's information within 27 seconds. When the AC enter the "information enquiry" status, it will display the code name in 2 seconds, the details are as follows.

Enquiry information	Displaying code	Meaning
T1	T1	Indoor room temp.
T2	T2	Indoor coil mid temp.
Т3	T3	Outdoor coil temp.
T4	T4	Outdoor temp.
T2B	Tb	Indoor coil outlet temp.
TP	TP	Compressor discharge temp
TH	TH	IPM modular temp.
Targeted Frequency	FT	Targeted Frequency
Actual Frequency	Fr	Actual Frequency
Indoor fan speed	IF	Indoor fan speed
Outdoor fan speed	OF	Outdoor fan speed
EXV opening angle	LA	EXV opening angle
Compressor continuous running time	СТ	Compressor continuous
		running time
Causes of compressor stop.	ST	Causes of compressor stop.
Reserve	A0	
Reserve	A1	
Reserve	b 0	
Reserve	b1	
Reserve	b 2	
Reserve	b 3	
Reserve	b 4	
Reserve	b 5	
Reserve	b 6	
Reserve	ďL	
Reserve	Αc	
Reserve	Uo	
Reserve	Td	
Reserve	dA	
Reserve	₫S	
Reserve	d⊤	

When the AC enter into the information enquiry status, it will display the code value in the next 25s, the details are as follows.

information		Meaning	Remark
T1,T2,T3,T4,	-1F,-1E,-1d,-1c,-	-25,-24,-23,-22,-21,-2	All the displaying temperature is actual
T2B,TP,TH,	1b,-1A	0	value.
Targeted	-19—99	-19—99	2. All the temperature is °C no matter what
Frequency,	A0,A1,A9	100,101,109	kind of remote controller is used.
Actual	b0,b1,b9	110,111,119	3. T1,T2,T3,T4,T2B display range:-25~70,
Frequency	c0,c1,c9	120,121,129	TP display range:-20~130.
	d0,d1,d9	130,131,139	4. Frequency display range: 0~159HZ.
	E0,E1,E9	140,141,149	5. If the actual value exceeds the range, it
	F0,F1,F9	150,151,159	will display the maximum value or minimum
		· · · ·	value.
Indoor fan	0	OFF	
speed	1,2,3,4	Low speed, Medium	For some big capacity motors.
/Outdoor fan		speed, High speed,	
speed		Turbo	
	14-FF	Actual fan	For some small capacity motors,
		speed=Display value	display value is from 14-FF(hexadecimal),
		turns to decimal	the corresponding fan speed range is from
		value and then	200-2550RPM.
		multiply 10. The unit	
		is RPM.	
EXV opening	0-FF	Actual EXV opening	
angle		value=Display value	
		turns to decimal	
		value and then	
	. ==	multiply 2.	
Compressor	0-FF	0-255 minutes	If the actual value exceeds the
continuous			range, it will display the maximum
running time Causes of	0.00	For the detailed	value or minimum value.
	0-99		Decimal display
compressor		meaning, please consult with engineer	
stop. Reserve	0-FF	Consult with engineer	
1/096176	U-1 1		
Reserve	2~28		
Reserve	5~20		
Reserve	5~25		

9.5 Multi-Function Board instruction (This multi-function board is optional)

9.5.1. Function

The multi-function board receives signals from the 4-cored wired controller (central controller), non-polar wired controller and the CP remote on-off signal (ON-OFF command signal). It then converts those signals to communication signals and forwards them to the main control board.

The multi-function board can output alarm signals.

The multi-function board has two versions, one for the non-polar wired controller and the other for the 4-cored wired controller or central controller.

9.5.2. CP Remote On-Off

9.5.2.1 This is the same as the LCAC, that is to say for the first time, when you active this function, you need firstly use remote controller to turn on the unit .After setting, when the unit are running, you can use the on-off function to turn off the units and display will show CP, when you use this function again, the display will cancel CP and the unit will run as the last situation.

9.5.2.2The dip-switch F2 settings and statuses are as follows:

Dip-switch 2	Dip-switch 1	Remote on-off control status
OFF	OFF	Disconnected =send CP
		Closed = cancel CP
ON	OFF	Closed = send CP
		Disconnected = cancel CP

9.5.3. ON-OFF Control

9.5.3.1 With on-off command, you can directly use this function regardless remote controller. The indoor will be turned on and off by this port. But indoor unit will still get order from remote controller when it is turned off by this port, when the indoor unit is turned on by this port, the unit will run in Auto mode ,Auto fan speed, 24°C setting temp.

9.5.3.2 Dip-switch F2 setting status are as below::

Dip-switch 2	Dip-switch 1	Remote on-off control status
OFF	ON	Disconnected = send ON
		Closed = send OFF
ON	ON	Closed = send OFF
		Disconnected = send ON

9.5.4. 4-cored Wired Controller, Central Controller and Non-polar Wired Controller

Note: The 4-cored wired controller, central controller, and non-polar wired controller are mutually exclusive and cannot operate at the same time. Only one of three can be enabled at any one time.

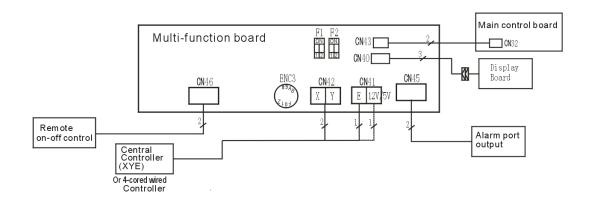
9.5.4.1 For network address, the settings for Dip-switch F1 and Rotary switch ENC3 are as follows:

Dip-switch 2	Dip-switch 1	Base address
OFF	OFF	0
OFF	ON	16
ON	OFF	32
ON	ON	48

Note: The network addresses are the Dip-switch F1 address plus the Rotary switch ENC3 address.

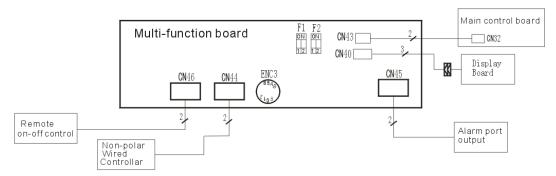
- 9.5.4.2 If the device receives a network address set by remote controller, the network address changes. If it receives the cancel signal of a network address set by remote controller, the network address will be adjusted according to the settings of the Dip-switch F1 and Rotary switch ENC3.
- 9.5.4.3 The network address is useless for 4-cored wired controller, only valid for Central controller and Non-polar wired controller.

9.5.5. Non-Polar Wired Controller


- 9.5.1 Each non-polar wired controller can be connected to a maximum of 16 indoor units. All the indoor units must be of the same series and within the same network. The address of the multi-function board must be set differently. The connection method must be Bus type.
- 9.5.2 The setting states are the same for all indoor units connected to the same non-polar wired controller

9.5.6.Alarm Port Output

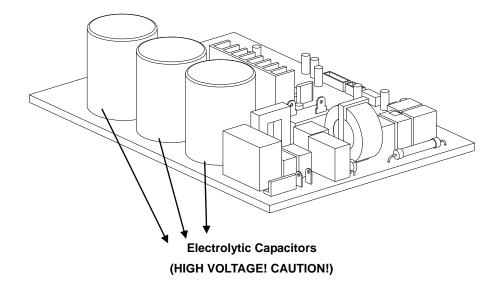
- 9.5.6.1 When the Air-condition in off state, the output signal is closed.
- 9.5.6.2 When the Air-condition in malfunction state, the output signal is closed.
- 9.5.6.3 When the Air-condition in on state, the output signal is disconnected.


9.5.7. Wiring Diagram

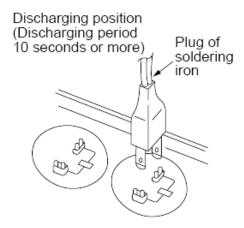
9.5.7.1 Connected to 4-cored wired controller or Central controller

Note: Shielded cables must be used to connect with 4-cored wired controller and central controller. The length of the cables should not exceed 50m.

9.5.7.2 Connected to Non-poplar wired controller



Note: Shielded cables must be used to connect with non-polar wired controller. The length of the cables should not exceed 50m.


10. Troubleshooting

Safety

Electricity power is still kept in capacitors even the power supply is shut off. Do not forget to discharge the electricity power in capacitor.

For other models, please connect discharge resistance (approx.100 Ω 40W) or soldering iron (plug) between +, - terminals of the electrolytic capacitor on the contrary side of the outdoor PCB.

Note: The picture above is only for reference. The plug of your side may be different.

10.1 Indoor Unit Error Display

Operation lamp	Timer lamp	Display	LED STATUS
☆ 1 time	Х	E0	Indoor unit EEPROM parameter error
☆ 2 times	Х	E1	Indoor / outdoor units communication error
☆ 3 times	Х	E2	Zero-crossing signal detection error
☆ 4 times	Х	E3	Indoor fan speed has been out of control
☆ 5 times	Х	E4	Indoor room temperature sensor T1 open circuit or short circuit
☆ 6 times	Х	E5	Evaporator coil temperature sensor T2 open circuit or short circuit
☆ 7 times	Х	EC	Refrigerant leakage detection
☆ 1 times	0	F0	Overload current protection
☆ 2 times	0	F1	Outdoor ambient temperature sensor T4 open circuit or short circuit
☆ 3 times	0	F2	Condenser coil temperature sensor T3 open circuit or short circuit
☆ 4 times	0	F3	Compressor discharge temperature sensor TP open circuit or short circuit
☆ 5 times	0	F4	Outdoor unit EEPROM parameter error
☆ 6 times	0	F5	Outdoor fan speed has been out of control
☆ 1 times	☆	P0	IPM malfunction or IGBT over-strong current protection
☆ 2 times	☆	P1	Over voltage or over low voltage protection
☆ 3 times	☆	P2	High temperature protection of IPM module
☆ 4 times	☆	P3*	Outdoor ambient temperature too low.
☆ 5 times	☆	P4	Inverter compressor drive error

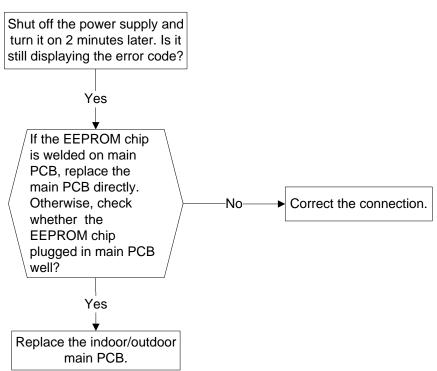
O (light)

 $X (off) \qquad \Leftrightarrow (flash)$

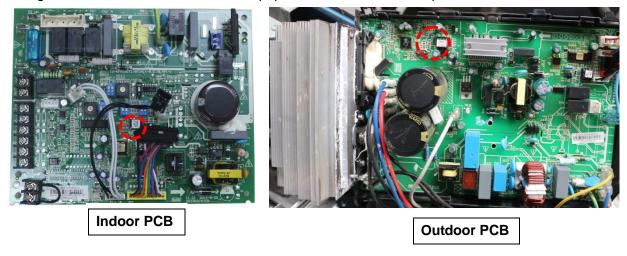
*P3

- 1) In heating mode, when the outdoor temperature is lower than -25°C for 1 hour, the indoor unit display error code P3.
- 2) If the outdoor temperature is higher than -22°C for 10 minutes and compressor stop for 1 hour or outdoor temperature is higher than -5°C for 10 minutes, then the unit will return to work.
- * Fault Symptom: The display board shows a garbled code or a code that is not an error code found in the service manual nor a temperature reading.

Trouble shooting:

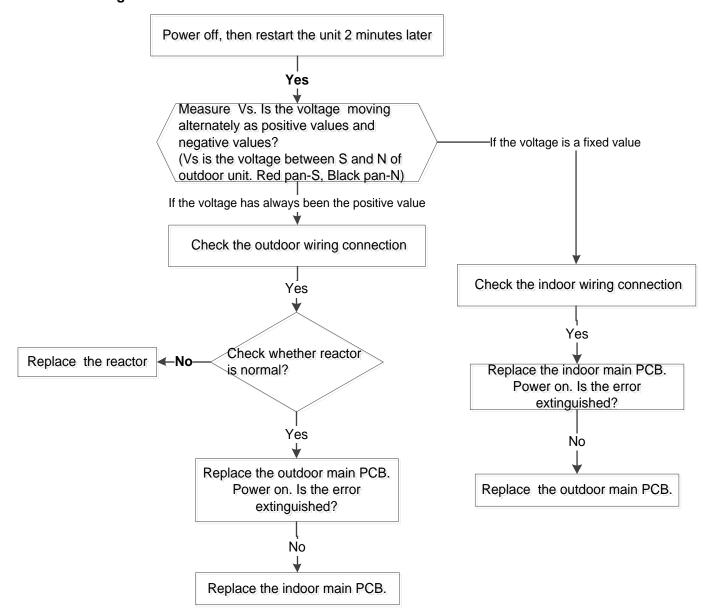

Use the remote controller. If the unit does not respond to the remote, the indoor PCB needs to be replaced; if the unit does respond, then the display board needs to be replaced.

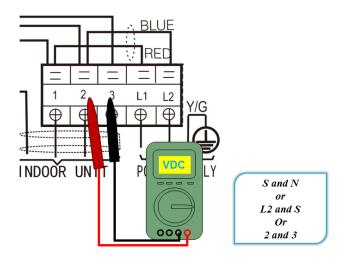
10.2 Trouble shooting


10.2.1 EEPROM parameter error diagnosis and solution(E0/F4)

Error Code	E0/F4
Malfunction decision conditions	Indoor or outdoor PCB main chip does not receive feedback from EEPROM chip.
Supposed causes	Installation mistakePCB faulty

Trouble shooting:

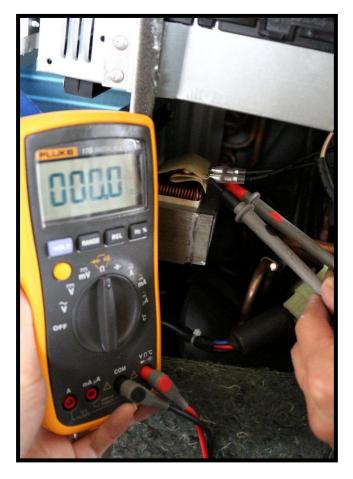

EEPROM: a read-only memory whose contents can be erased and reprogrammed using a pulsed voltage. For the location of EEPROM chip, please refer to the below photos.



Note: The two photos above are only for reference, it's may be not same totally with the ones on your side.

10.2.2 Indoor / outdoor unit's communication diagnosis and solution(E1)

Error Code	E1
Malfunction decision conditions	Indoor unit does not receive the feedback from outdoor unit during 110 seconds and this condition happens four times continuously.
Supposed causes	Wiring mistake Indoor or outdoor PCB faulty

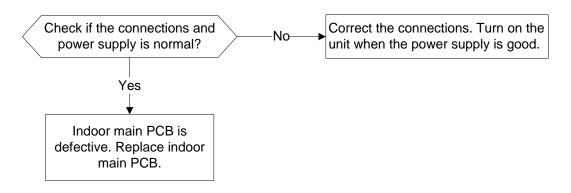

Remark:

Use a multimeter to test the DC voltage between 2 port and 3 port of outdoor unit. The red pin of multimeter connects with 2 port while the black pin is for 3 port.

When AC is normal running, the voltage will move alternately as positive values and negative values.

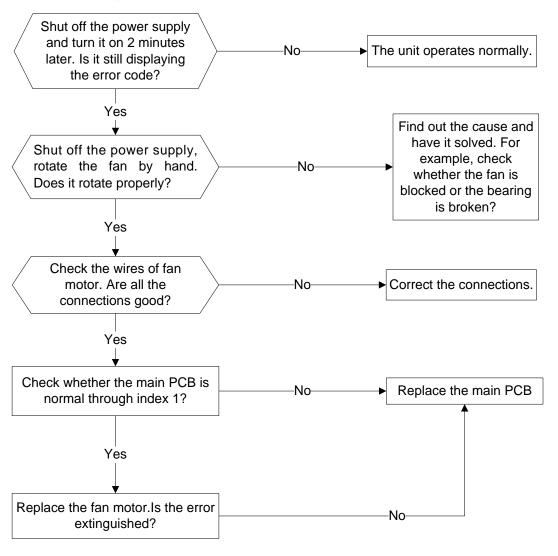
If the outdoor unit has malfunction, the voltage will move alternately with positive value.

While if the indoor unit has malfunction, the voltage will be a certain value.


Remark:

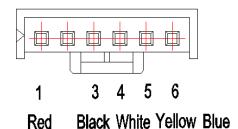
Use a multi meter to test the resistance of the reactor which does not connect with capacitor.

The normal value should be around zero ohm. Otherwise, the reactor must have malfunction and need to be replaced.


10.2.3 Zero crossing detection error diagnosis and solution (E2)

	<u> </u>
Error Code	E2
Malfunction decision conditions	The zero crossing signal time interval is not correct for continuous 240s
Conditions	2.00
Supposed causes	Indoor PCB faulty

10.2.4 Fan speed has been out of control diagnosis and solution(E3/F5)


Error Code	E3/F5
Malfunction decision conditions	When indoor fan speed keeps too low (300RPM) for certain time, the unit will stop and the LED will display the failure.
Supposed causes	Wiring mistake Fan ass'y faulty
	Fan motor faultyPCB faulty

Index 1:

1:Indoor or Outdoor DC Fan Motor(control chip is in fan motor)

Power on and when the unit is in standby, measure the voltage of pin1-pin3, pin4-pin3 in fan motor connector. If the value of the voltage is not in the range showing in below table, the PCB must has problems and need to be replaced.

DC motor voltage input and output(voltage: 220-240V~)

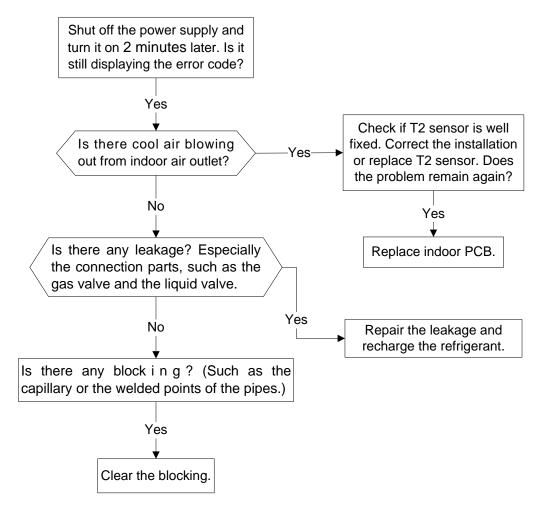
NO.	Color	Signal	Voltage
1	Red	Vs/Vm	280V~380V
2			
3	Black	GND	0V
4	White	Vcc	14-17.5V
5	Yellow	Vsp	0~5.6V
6	Blue	FG	14-17.5V

DC motor voltage input and output(voltage :115V~)

		•	
NO.	Color	Signal	Voltage
1	Red	Vs/Vm	140V~190V
2			
3	Black	GND	0V
4	White	Vcc	14-17.5V
5	Yellow	Vsp	0~5.6V
6	Blue	FG	14-17.5V

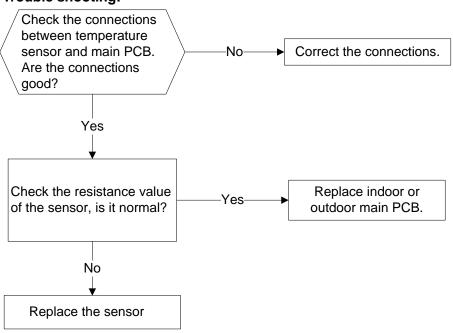
2. Outdoor DC Fan Motor (control chip is in outdoor PCB)

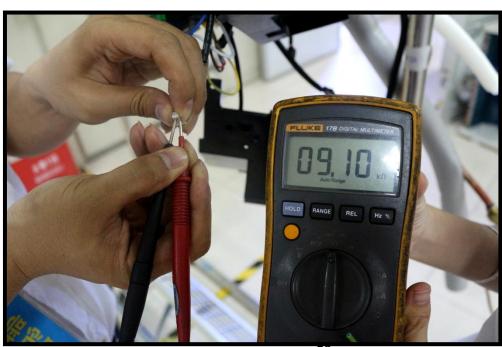
Power on ,and check if the fan can run normally, if the fan can run normally, the PCB must has problems and need to be replaced, If the fan can't run normally, measure the resistance of each two pins. If the resistance is not equal to each other, the fan motor must have problems and need to be replaced, otherwise the PCB must has problems and need to be replaced.


3. Indoor AC Fan Motor

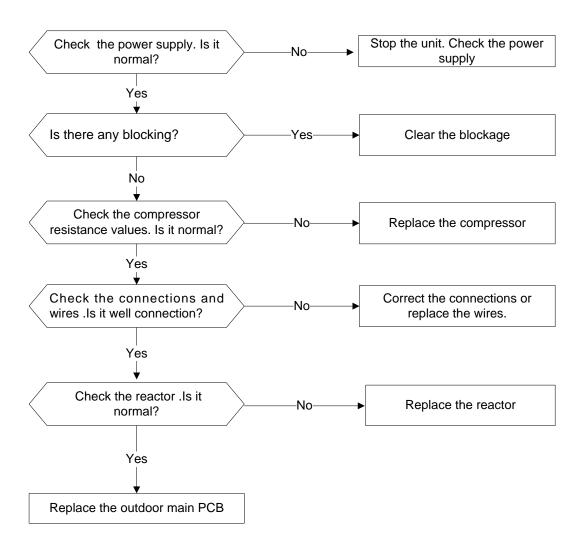
Power on and set the unit running in fan mode at high fan speed. After running for 15 seconds,

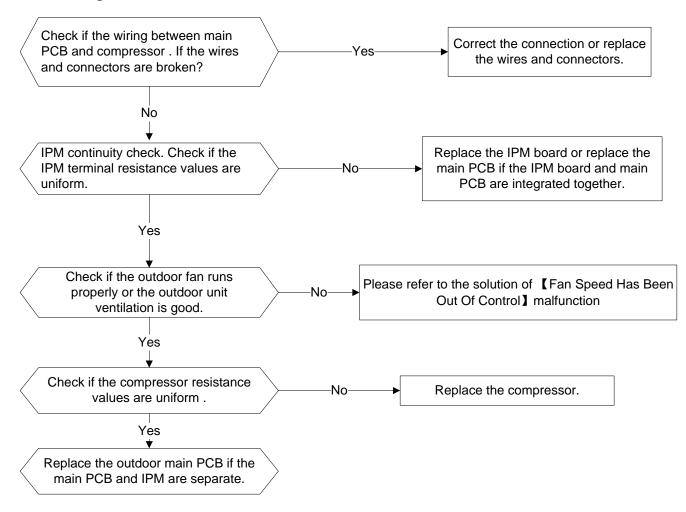
measure the voltage of pin1 and pin2. If the value of the voltage is less than 100V(208~240V power supply)or 50V(115V power supply), the PCB must has problems and need to be replaced.


10.2.5 Refrigerant Leakage Detection diagnosis and solution(EC)


Error Code	EC
Malfunction decision conditions	Define the evaporator coil temp.T2 of the compressor just starts running as Tcool. In the beginning 8 minutes after the compressor starts up, if T2 <tcool−2℃ "ec"="" 3="" 4="" 50hz="" ac="" and="" area="" compressor="" continuous="" display="" does="" frequency="" happens="" higher="" keep="" minutes,="" not="" off.<="" running="" seconds="" show="" situation="" td="" than="" the="" this="" times,="" turn="" will=""></tcool−2℃>
Supposed causes	 T2 sensor faulty Indoor PCB faulty System problems, such as leakage or blocking.

10.2.6 Open circuit or short circuit of temperature sensor diagnosis and solution

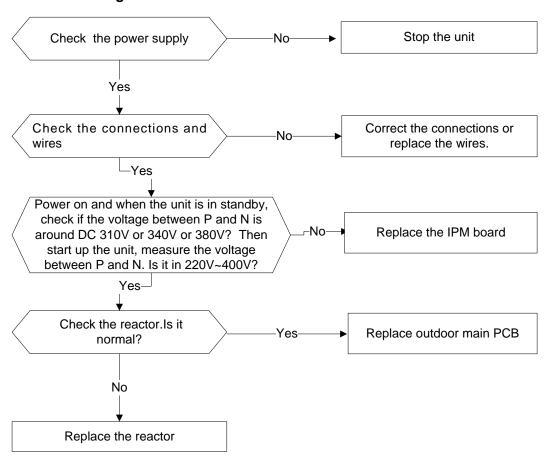

Error Code	E4/E5/F1/F2/F3
Malfunction decision conditions	If the sampling voltage is lower than 0.06V or higher than 4.94V, the LED will display the failure.
Supposed causes	 Wiring mistake Sensor faulty PCB faulty


10.2.7 Overload current protection diagnosis and solution(F0)

Error Code	F0
Malfunction decision conditions	An abnormal current rise is detected by checking the specified current detection circuit.
Supposed causes	 Power supply problems. System blockage PCB faulty Wiring mistake Compressor malfunction

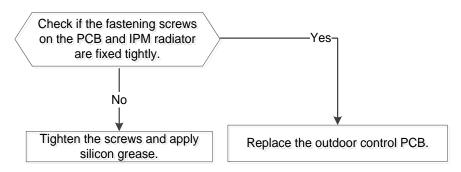
10.2.8 IPM malfunction or IGBT over-strong current protection diagnosis and solution(P0)

Error Code	P0
Malfunction decision conditions	When the voltage signal that IPM send to compressor drive chip is abnormal, the display LED will show "P0" and AC will turn off.
Supposed causes	 Wiring mistake IPM malfunction Outdoor fan ass'y faulty Compressor malfunction Outdoor PCB faulty

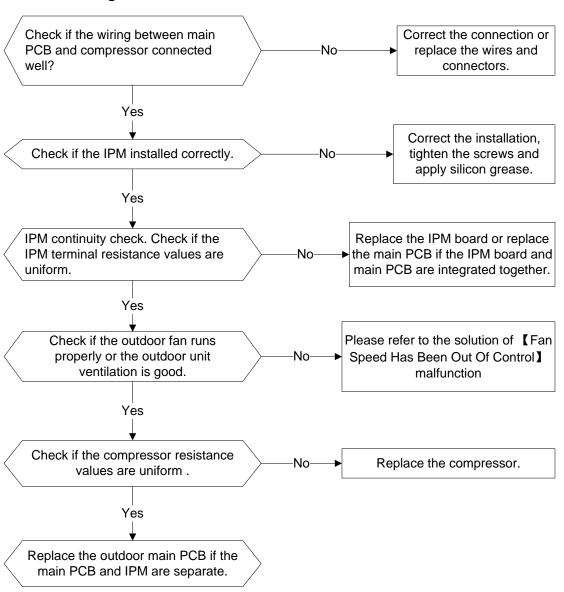

> IPM continuity check

Turn off the power, let the large capacity electrolytic capacitors discharge completely, and dismount the IPM. Use a digital tester to measure the resistance between P and UVWN; UVW and N.

Digital tester		Normal resistance value	Digital	tester	Normal resistance value		
(+)Red	(-)Black		(+)Red	(-)Black			
Р	N	∞	U		••		
	U	ω	V	N	∞		
	V	(Several MΩ)	W	IN IN	(Several MΩ)		
	W		(+)Red				

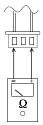

10.2.9 Over voltage or too low voltage protection diagnosis and solution(P1)

Error Code	P1				
Malfunction decision	An abnormal voltage rise or drop is detected by checking the				
conditions	specified voltage detection circuit.				
Supposed causes	Power supply problems.				
	System leakage or block				
	PCB faulty				


10.2.10 High temperature protection of IPM diagnosis and solution (P2)

Error Code	P2
Malfunction decision	If the temperature of IPM module is higher than limited value, the
conditions	LED will display the failure.
Supposed causes	IPM radiator problem
	PCB faulty

10.2.11 Inverter compressor drive error diagnosis and solution(P4)


Error Code	P4
Malfunction decision conditions	An abnormal inverter compressor drive is detected by a special detection circuit, including communication signal detection, voltage detection, compressor rotation speed signal detection and so on.
Supposed causes	 Wiring mistake IPM malfunction Outdoor fan ass'y faulty Compressor malfunction Outdoor PCB faulty

Main parts check

1. Temperature sensor checking

Disconnect the temperature sensor from PCB, measure the resistance value with a tester.

Tester

Temperature Sensors.

Room temp.(T1) sensor,

Indoor coil temp.(T2) sensor,

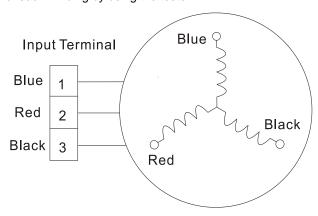
Outdoor coil temp.(T3) sensor,

Outdoor ambient temp.(T4) sensor,

Compressor discharge temp.(TP) sensor.

Measure the resistance value of each winding by using the multi-meter.

Appendix 1 Temperature Sensor Resistance Value Table for T1,T2,T3,T4 (°C--K)


CC °F K Ohm °C °F K Ohm °C °F K Ohm °C °F K Ohm 20 -4 115,266 20 68 12,6431 60 140 2,3574 100 212 0,62973 19 -2 108,148 21 70 12,0561 61 142 2,27249 101 216 0,59386 -17 1 96,3423 23 73 10,9731 63 145 2,11241 103 217 0,57683 -16 3 99,5665 24 75 10 65 149 1,5652 105 221 0,54486 -15 5 84,219 25 77 10 65 149 1,96527 106 221 0,54486 -14 4 7 79,311 28 2,14545 67 153 1,80303 107 225 0,51426 -11 12 366,6088 29	Appen	477	omporataro	0011001	1 1001010	ance value	1001010	,	,,,,,,,,	13)		
1-19	°C	°F	K Ohm	°C	°F	K Ohm	°C	۰F	K Ohm	°C	°F	K Ohm
-18 0 101.517 22 72 11.5 62 144 2.19073 102 216 0.59386 -17 1 96.3423 23 73 10.9731 63 145 2.11241 103 217 0.57683 -16 3 89.5865 24 75 10.4736 64 147 2.03732 104 219 0.56038 -15 5 84.219 25 77 10 65 149 1.96532 105 221 0.56038 -14 7 79.311 26 79 9.55074 66 151 1.98627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 109 228 0.4882 -10 14 62.2756	-20	-4	115.266	20	68	12.6431	60	140	2.35774	100	212	0.62973
-17 1 96.3423 23 73 10.9731 63 145 2.11241 103 217 0.57683 -16 3 89.5865 24 75 10.4736 64 147 2.03732 104 219 0.56038 -15 5 84.219 25 77 10 65 149 1.96532 105 221 0.54048 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.54448 -12 10 70.1688 28 8.71983 68 154 1.76647 108 226 0.49989 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.4482 -10 14 62.2756 30	-19	-2	108.146	21	70	12.0561	61	142	2.27249	101	214	0.61148
-16 3 89,5865 24 75 10,4736 64 147 2,03732 104 219 0.56038 -15 5 84,219 25 77 10 65 149 1,96532 105 221 0.54448 -14 7 79,311 26 79 9,55074 66 151 1,89627 106 223 0.52912 -13 9 74,536 27 81 9,12445 67 153 1,83003 107 225 0.51448 -12 10 70,1698 28 82 8,71983 68 154 1,70647 109 228 0.486 -10 14 62,2756 30 86 7,97078 70 158 1,64691 110 230 0.447256 -9 16 58,7079 31 88 7,62411 71 160 1,59068 111 232 0.45825 -8 18 56,3694	-18	0	101.517	22	72	11.5	62	144	2.19073	102	216	0.59386
-15 5 84.219 25 77 10 65 149 1.96532 105 221 0.54448 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.4986 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45967 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438	-17	1	96.3423	23	73	10.9731	63	145	2.11241	103	217	0.57683
-14 7 79,311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.49898 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59668 111 232 0.45256 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 <td>-16</td> <td>3</td> <td>89.5865</td> <td>24</td> <td>75</td> <td>10.4736</td> <td>64</td> <td>147</td> <td>2.03732</td> <td>104</td> <td>219</td> <td>0.56038</td>	-16	3	89.5865	24	75	10.4736	64	147	2.03732	104	219	0.56038
-13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.4989 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.9355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 <td>-15</td> <td>5</td> <td>84.219</td> <td>25</td> <td>77</td> <td>10</td> <td>65</td> <td>149</td> <td>1.96532</td> <td>105</td> <td>221</td> <td>0.54448</td>	-15	5	84.219	25	77	10	65	149	1.96532	105	221	0.54448
-12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.49989 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45967 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68055 74 165 1.34105 116 241 0.4066 -5 23 46.5725 </td <td>-14</td> <td>7</td> <td>79.311</td> <td>26</td> <td>79</td> <td>9.55074</td> <td>66</td> <td>151</td> <td>1.89627</td> <td>106</td> <td>223</td> <td>0.52912</td>	-14	7	79.311	26	79	9.55074	66	151	1.89627	106	223	0.52912
-11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43402 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -2 28 39.8239 </td <td>-13</td> <td>9</td> <td>74.536</td> <td>27</td> <td>81</td> <td>9.12445</td> <td>67</td> <td>153</td> <td>1.83003</td> <td>107</td> <td>225</td> <td>0.51426</td>	-13	9	74.536	27	81	9.12445	67	153	1.83003	107	225	0.51426
-10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 111 232 0.45957 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 111 243 0.38991 -2 28 39.8239	-12	10	70.1698	28	82	8.71983	68	154	1.76647	108	226	0.49989
-9 16 58,7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239	-11	12	66.0898	29	84	8.33566	69	156	1.70547	109	228	0.486
-8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988	-10	14	62.2756	30	86	7.97078	70	158	1.64691	110	230	0.47256
-7 19 52,2438 33 91 6,98142 73 163 1,48481 113 235 0,43482 -6 21 49,3161 34 93 6,68355 74 165 1,43498 114 237 0,42304 -5 23 46,5725 35 95 6,40021 75 167 1,38703 115 239 0,41164 -4 25 44 36 97 6,13059 76 169 1,34105 116 241 0,4006 -3 27 41,5878 37 99 5,87359 77 171 1,29078 117 243 0,38991 -2 28 39,8239 38 100 5,62961 78 172 1,25423 118 244 0,37956 -1 30 37,1988 39 102 5,39689 79 174 1,2133 119 246 0,36954 0 32 35,2024	-9	16	58.7079	31	88	7.62411	71	160	1.59068	111	232	0.45957
-6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269	-8	18	56.3694	32	90	7.29464	72	162	1.53668	112	234	0.44699
-5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635	-7	19	52.2438	33	91	6.98142	73	163	1.48481	113	235	0.43482
-4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058	-6	21	49.3161	34	93	6.68355	74	165	1.43498	114	237	0.42304
-3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.36982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 <td>-5</td> <td>23</td> <td>46.5725</td> <td>35</td> <td>95</td> <td>6.40021</td> <td>75</td> <td>167</td> <td>1.38703</td> <td>115</td> <td>239</td> <td>0.41164</td>	-5	23	46.5725	35	95	6.40021	75	167	1.38703	115	239	0.41164
-2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954	-4	25	44	36	97	6.13059	76	169	1.34105	116	241	0.4006
-1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932	-3	27	41.5878	37	99	5.87359	77	171	1.29078	117	243	0.38991
0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.9681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662	-2	28	39.8239	38	100	5.62961	78	172	1.25423	118	244	0.37956
1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662	-1	30	37.1988	39	102	5.39689	79	174	1.2133	119	246	0.36954
2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094	0	32	35.2024	40	104	5.17519	80	176	1.17393	120	248	0.35982
3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184	1	34	33.3269	41	106	4.96392	81	178	1.13604	121	250	0.35042
4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 <td>2</td> <td>36</td> <td>31.5635</td> <td>42</td> <td>108</td> <td>4.76253</td> <td>82</td> <td>180</td> <td>1.09958</td> <td>122</td> <td>252</td> <td>0.3413</td>	2	36	31.5635	42	108	4.76253	82	180	1.09958	122	252	0.3413
5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 </td <td>3</td> <td>37</td> <td>29.9058</td> <td>43</td> <td>109</td> <td>4.5705</td> <td>83</td> <td>181</td> <td>1.06448</td> <td>123</td> <td>253</td> <td>0.33246</td>	3	37	29.9058	43	109	4.5705	83	181	1.06448	123	253	0.33246
6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005<	4	39	28.3459	44	111	4.38736	84	183	1.03069	124	255	0.3239
7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341	5	41	26.8778	45	113	4.21263	85	185	0.99815	125	257	0.31559
8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275	6	43	25.4954	46	115	4.04589	86	187	0.96681	126	259	0.30754
9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 <td>7</td> <td>45</td> <td>24.1932</td> <td>47</td> <td>117</td> <td>3.88673</td> <td>87</td> <td>189</td> <td>0.93662</td> <td>127</td> <td>261</td> <td>0.29974</td>	7	45	24.1932	47	117	3.88673	87	189	0.93662	127	261	0.29974
10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.	8	46	22.5662	48	118	3.73476	88	190	0.90753	128	262	0.29216
11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	9	48	21.8094	49	120	3.58962	89	192	0.8795	129	264	0.28482
12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	10	50	20.7184	50	122	3.45097	90	194	0.85248	130	266	0.2777
13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	11	52	19.6891	51	124	3.31847	91	196	0.82643	131	268	0.27078
14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	12	54	18.7177	52	126	3.19183	92	198	0.80132	132	270	0.26408
15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	13	55	17.8005	53	127	3.07075	93	199	0.77709	133	271	0.25757
16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	14	57	16.9341	54	129	2.95896	94	201	0.75373	134	273	0.25125
17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	15	59	16.1156	55	131	2.84421	95	203	0.73119	135	275	0.24512
18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	16	61	15.3418	56	133	2.73823	96	205	0.70944	136	277	0.23916
	17	63	14.6181	57	135	2.63682	97	207	0.68844	137	279	0.23338
19 66 13,2631 59 138 2,44677 99 210 0.64862 139 282 0.22231	18	64	13.918	58	136	2.53973	98	208	0.66818	138	280	0.22776
15 15 15 15 15 15 15 15	19	66	13.2631	59	138	2.44677	99	210	0.64862	139	282	0.22231

Appendix 2 Temperature Sensor Resistance Value Table for TP (°C --K)

°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm
-20	-4	542.7	20	68	68.66	60	140	13.59	100	212	3.702
-19	-2	511.9	21	70	65.62	61	142	13.11	101	214	3.595
-18	0	483	22	72	62.73	62	144	12.65	102	216	3.492
-17	1	455.9	23	73	59.98	63	145	12.21	103	217	3.392
-16	3	430.5	24	75	57.37	64	147	11.79	104	219	3.296
-15	5	406.7	25	77	54.89	65	149	11.38	105	221	3.203
-14	7	384.3	26	79	52.53	66	151	10.99	106	223	3.113
-13	9	363.3	27	81	50.28	67	153	10.61	107	225	3.025
-12	10	343.6	28	82	48.14	68	154	10.25	108	226	2.941
-11	12	325.1	29	84	46.11	69	156	9.902	109	228	2.86
-10	14	307.7	30	86	44.17	70	158	9.569	110	230	2.781
-9	16	291.3	31	88	42.33	71	160	9.248	111	232	2.704
-8	18	275.9	32	90	40.57	72	162	8.94	112	234	2.63
-7	19	261.4	33	91	38.89	73	163	8.643	113	235	2.559
-6	21	247.8	34	93	37.3	74	165	8.358	114	237	2.489
-5	23	234.9	35	95	35.78	75	167	8.084	115	239	2.422
-4	25	222.8	36	97	34.32	76	169	7.82	116	241	2.357
-3	27	211.4	37	99	32.94	77	171	7.566	117	243	2.294
-2	28	200.7	38	100	31.62	78	172	7.321	118	244	2.233
-1	30	190.5	39	102	30.36	79	174	7.086	119	246	2.174
0	32	180.9	40	104	29.15	80	176	6.859	120	248	2.117
1	34	171.9	41	106	28	81	178	6.641	121	250	2.061
2	36	163.3	42	108	26.9	82	180	6.43	122	252	2.007
3	37	155.2	43	109	25.86	83	181	6.228	123	253	1.955
4	39	147.6	44	111	24.85	84	183	6.033	124	255	1.905
5	41	140.4	45	113	23.89	85	185	5.844	125	257	1.856
6	43	133.5	46	115	22.89	86	187	5.663	126	259	1.808
7	45	127.1	47	117	22.1	87	189	5.488	127	261	1.762
8	46	121	48	118	21.26	88	190	5.32	128	262	1.717
9	48	115.2	49	120	20.46	89	192	5.157	129	264	1.674
10	50	109.8	50	122	19.69	90	194	5	130	266	1.632
11	52	104.6	51	124	18.96	91	196	4.849			
12	54	99.69	52	126	18.26	92	198	4.703			
13	55	95.05	53	127	17.58	93	199	4.562			
14	57	90.66	54	129	16.94	94	201	4.426			
15	59	86.49	55	131	16.32	95	203	4.294			
16	61	82.54	56	133	15.73	96	205	4.167			
17	63	78.79	57	135	15.16	97	207	4.045			
18	64	75.24	58	136	14.62	98	208	3.927			
19	66	71.86	59	138	14.09	99	210	3.812			

2.Compressor checking

Measure the resistance value of each winding by using the tester.

Position			Resistance Value			
	ASN98D22UFZ	ASM98D32UFZ		ASN140D21UFZ	ATN150D30UFZA	ATF235D22UMT
Blue -						
Red					1.02Ω	
Blue -	1.57Ω		2.3Ω	1.28Ω	(20°C/68°F)	0.75Ω
Black	(20℃/68℉)	(20)°C/68°F)	(20° ℃/68°F)		(20℃/68 ℉)
Red -						
Blue						